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1 Introduction

Gauge/gravity dualities have become powerful tools for understanding diverse phenomena

in strongly coupled gauge theories. In this paper we continue a line of investigation con-

cerning the influence of an external magnetic field on the dynamics of the flavour sector of a

gauge theory. The ultimate goal is to try to isolate features that are of interest for learning

about the properties of nuclear matter, the idea being that these techniques provide an

alternative (and/or complementary) route to that of Quantum Chromodynamics (QCD)

for access to the physics of interest in various regimes. The model we study here has no

pretensions to being close in microscopic detail to the known strong interaction physics

(such as those captured by QCD), but nevertheless there is good reason to believe that

there are phenomena that can be captured using it that are not sensitive to all of the detail.
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The model that we study here was, in essence, constructed by Witten in ref. [2] by

taking the near-horizon limit of D4-branes compactified on a spatial circle to capture the

physics of confinement/deconfinement transition in QCD. This model was later revisited

in refs. [4, 5] incorporating the dynamics of probe D8/anti-D8 flavour branes, which led to

a geometric understanding of spontaneous chiral symmetry breaking. It is now commonly

known as the Sakai-Sugimoto model.

In the Sakai-Sugimoto model the dynamics of the flavour sector has been analyzed at

finite temperature in refs. [9, 10] and in the presence of an external electromagnetic field

in refs. [17, 18]. For magnetic fields, it has previously been argued in e.g. ref. [45] that

for (3 + 1) and (2 + 1)-dimensional field theories there is a universal phenomenon at work

that is sometimes referred to as magnetic catalysis of chiral symmetry breaking. These

field theory treatments typically involve analyzing truncated Dyson-Schwinger equations

in order to get access to the non-perturbative physics.

This physics (that of a magnetic field catalyzing chiral symmetry breaking) can now be

studied using the alternative technique of gauge/gravity duals (the magnetic field maps to

a background B-field in the string theory and causes the flavour branes in the geometry to

bend, generically), and it has been observed [18] to persist in all the Sakai-Sugimoto type

models, where the flavour degrees of freedom are inserted as defects in the dual geometry

for several (2 + 1)- and (3 + 1)-dimensional gauge theories. A similar effect has been

observed to exist in other models in refs. [33, 37]. In those works, some of the structure

of the meson spectrum was also studied, revealing phenomena such as Zeeman splitting,

level mixing, etc. Here we would like to study the meson spectrum in the presence of an

external magnetic field in the Sakai-Sugimoto model supplementing the study of the phase

diagram obtained in our earlier work [18].

Previous studies of the meson spectrum in this particular model have been carried

out in e.g., ref. [26] for both low spin and high spin mesons. We uncover the role of the

magnetic field in these spectra. For the low spin mesons we restrict ourselves to the high

temperature phase only and therefore study the quasinormal modes of the scalar and a

subset of the vector mesons. This comes with a caveat. The precise identification between

the quasinormal frequency associated with the supergravity fluctuations in this model and

the meson spectrum in the dual field theory is rather subtle and poorly understood.1 In

the Sakai-Sugimoto type models the mesons transform under an U(Nf )diag, whereas the

quasinormal modes transform under either an U(Nf )L or an U(Nf )R. This fact alone

readily makes it difficult to precisely define what gauge theory quantities we would be

studying by extracting the quasinormal modes. Nevertheless the quasinormal modes are

naturally associated to the embeddings falling into the black hole of the gravity dual and

therefore we study those in their own rights.

Moreover, since the embedding function of the probe D8-brane is trivial (τ0(u) = const,

where τ0(u) denotes the profile function) in the high temperature phase, the scalar and the

vector fluctuations remain decoupled even in the presence of a background anti-symmetric

field such as a constant magnetic field. This is to be contrasted with the D3-D7 model

1For a detailed analysis regarding the issue of precise identification, see ref. [32].
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in a background magnetic field [38] where the profile function of the probe D7-brane is

non-trivial and therefore the scalar fluctuations couple with the vector fluctuations. Thus

studying quasinormal modes in presence of a background anti-symmetric field in general is

more difficult in the later model.

The study of high spin mesons is another avenue that we pursue. We find that the

presence of the magnetic field enhances the stability of such mesons by increasing their

angular momentum. This is turn increases the dissociation temperature at which they fall

apart into their constituents. We also uncover a simple realization of the Zeeman effect in

the presence of a background field. It can be readily seen that such effects exist in all the

Sakai-Sugimoto type models with probe branes of diverse dimensions.

This article is divided into different sections. In section 2, we review the Sakai-Sugimoto

model and its phase diagram in presence of a magnetic field. We then move on to section 3

to study the quasinormal modes for scalars and the decoupled sector of transverse and

longitudinal vector mesons in this model. Section 4 is devoted to the study of high spin

mesons, where we first obtain some analytical results and then proceed to the numerical

analysis. We have relegated the details of some of the calculations to four appendices.

Appendix A contains the details of the Lagrangian for the quadratic fluctuations and the

equations of motion for the gauge fields as well as a detailed discussion about when they

can be decoupled. In appendix B we study the longitudinal and transverse modes in the

hydrodynamic limit in vanishing magnetic field and obtain the well-known hydrodynamic

dispersion relation for the longitudinal mode. Appendix C contains the general variable

changes we use to recast the equations of motion for the fluctuation modes into an effective

Schrödinger equation. In appendix D we present a model calculation of high spin mesons

in a background magnetic field by analyzing spinning strings in Rindler space coupled to

a magnetic field. This serves as a toy model that captures some of the features of meson

dissociation in a background field.

2 Review of the model

The Sakai-Sugimoto model is constructed from the near horizon limit of Nc D4-branes

with one compact spatial direction along which an anti-periodic boundary condition is

imposed for the adjoint fermions. This makes the adjoint fermions massive and breaks

supersymmetry. Flavours are introduced by Nf D8 and D8-branes intersecting the D4-

brane at a (3 + 1)-dimensional defect. Thus there is a global U(Nf )L × U(Nf )R flavour

symmetry as viewed from the worldvolume of the D4-brane. We work in the probe limit,

namely Nf ≪ Nc where the flavour branes do not backreact on the background.

At low temperature the near horizon geometry of the D4-brane is given by

ds2 =
( u

R

)3/2
(

dt2E + dxidx
i + f(u)dτ2

)

+
( u

R

)−3/2
(

du2

f(u)
+ u2dΩ2

4

)

, (2.1)

eφ = gs

( u

R

)3/4
, F(4) =

2πNc

V4
ǫ4 , f(u) = 1 −

(uKK

u

)3
, R3 = πgsNcℓ

3
s ,

where xi are the flat 3-directions, tE is the Euclidean time coordinate, τ is the spatial

compact circle, dΩ2
4 is the metric on the round S4 and u is the radial direction, ℓs is the
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string length, gs is the string coupling; V4 and ǫ4 are the volume and volume form of S4

respectively. Also, φ is the dilaton and F(4) is the RR four-form field strength. The radius

of the compact spatial circle is given by 2πR4 = (4πR3)/(3u
1/2
KK), which is obtained from

the condition that the compact direction τ shrinks away smoothly at u = uKK.

The five-dimensional gauge coupling is given by g2
5 = (2π)2gsℓs, the four dimensional

gauge coupling can be obtained by dimensional reduction yielding g2
4 = g2

5/2πR and the

five dimensional ’t Hooft coupling is defined to be λ = (g2
5Nc)/4π. Gravity calculations

are reliable when the spacetime curvature is small compared to the string tension and also

when string loop effects are suppressed. Taken together these two conditions tell us that

the gravity approach is valid in strong ’t Hooft coupling limit of the four-dimensional gauge

theory (see e.g. ref. [9]).

The high temperature background is given by

ds2 =
( u

R

)3/2
(

dxidx
i + f(u)dt2E + dτ2

)

+
( u

R

)−3/2
(

du2

f(u)
+ u2dΩ2

4

)

,

t = t+
4πR3/2

3u
1/2
T

, T =
1

β
=

(

4πR3/2

3u
1/2
T

)−1

, f(u) = 1 −
(uT

u

)3
, (2.2)

where T is the background temperature and all other parameters are as defined before.

We let the probe brane-anti-brane pair stretch along the directions {t, xi,Ω4} and have

a non trivial profile described by the function τ(u). In the low temperature phase the back-

ground cigar topology in the {τ, u}-submanifold forces the brane pair to join at some radial

distance U0 breaking the global U(Nf )L ×U(Nf )R down to a U(Nf )diag. This is then iden-

tified with the spontaneous chiral symmetry breaking in the model. The high temperature

phase is richer in content. The cigar topology now appears in the {tE , u}-submanifold

of the background and therefore the brane-anti-brane pair can end on the horizon sepa-

rately. Depending on the background temperature or the asymptotic separation between

the brane-anti-brane pair, there is a chiral symmetry restoring transition.

The background geometry undergoes a confinement/deconfinement transition at a tem-

perature Td = 1/(2πR4), where R4 is the radius of the compact τ -direction. This is the

temperature at which the gluons deconfine. When flavours are added, depending on the

dimensionless parameter L/R4 there can be a range of temperatures where the gluons are

deconfined and chiral symmetry in the flavour sector is spontaneously broken by virtue

of the brane-anti-brane pair joining at the radial position U0. If the quark separation L

obeys the bound that L/R4 < 0.97, then the intermediate phase (which is deconfined but

chiral symmetry broken) exists. If however L/R4 > 0.97, then deconfinement and chiral

symmetry restoration happens together. Therefore there can exist a separation of scales

between the gluon deconfinement and chiral symmetry restoring transitions. This has been

discussed in refs. [9, 10].

We can also set R4 → ∞ so that the spatial circle direction now becomes a flat extended

direction; this particular limit has been studied in detail in refs. [6–8]. It turns out that in

this particular limit the dual gauge theory is described by the Nambu-Jona-Lasinio model

(when probing with D8-branes) or the Gross-Neveu model (when probing with D6-branes)

– 4 –
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Figure 1. The phase diagram in T − B plane. The vertical axis is expressed in units of 1/L and

the horizontal axis is expressed in units of R.

with a non-local four-fermi interaction. In this case, the asymptotic separation between the

brane-anti-brane pair sets the coupling for the four-fermi interaction. Here the so called

intermediate temperature phase always exists.

In this model, the effect of a background magnetic field on chiral symmetry breaking

was analyzed in refs. [17, 18]. It was explicitly shown that a background magnetic field en-

hances chiral symmetry breaking and increases the chiral symmetry restoring temperature.

See also ref. [19] for the effect of a background magnetic field on an open Wilson line, the

proposed order parameter of chiral symmetry breaking in the Sakai-Sugimoto model. The

resulting phase diagram is shown in figure 1. This magnetic field couples to the flavour

sector only, therefore it does not affect the (gluon) confinement/deconfinement transition

temperature. Thus the background magnetic field increases the separation of gluon decon-

finement and chiral symmetry restoring temperature scales. However, as we can observe

from figure 1 this separation of scales does not increase indefinitely with increasing mag-

netic field, rather it tends to saturate a maximum value. This particular feature persists

in several other Sakai-Sugimoto type models [18].

3 Mesons with small spin

Mesons with low spin in the dual gauge theory correspond to the small fluctuations of

the classical profile of the probe brane. The fluctuation in the geometric shape (which is

denoted by the function τ(u)) of the probe branes corresponds to the scalar (or pseudo-

scalar) meson mode and the fluctuation of the Maxwell field on the worldvolume of the

D8/D8-brane corresponds to the vector (or axial vector) mesons.

3.1 Scalar fluctuation

Let us consider a fluctuation of the probe brane embedding function τ(u) = τ0(u)+χ, where

τ0(u) is the classical profile. Before proceeding further let us recall that the function τ0(u)

– 5 –
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Figure 2. The Schrödinger potential for different values of external magnetic field. The dashed

vertical black line represents the position of the horizon, the top-most curve represents the po-

tential at zero external field. As the field increases we find the potential grows more slowly with

increasing u.

is non-trivial only for the U-shaped configuration (for the straight branes, this function

is just a constant). Here we will consider the high temperature phase only for which

τ0(u) = const. and the scalar fluctuation is always decoupled from the vector fluctuations.

To recast the equation of motion for the fluctuation mode into an equivalent Schrödinger

equation we define, fχ(u) = σ(u)g(u), where σ(u) is defined in eq. (C.2) (the details of the

coordinate changes are given in appendix C). The equivalent Schrödinger equation is given

by (to avoid notational clutter we choose R = 1 and UT = 1)

∂2
ũg(ũ) + ω2g(ũ) − VS(ũ)g(ũ) = 0 , where dũ =

u3/2

u3 − 1
du ,

and VS(u) =

(

u3 − 1
) (

5B4
(

7u3 + 5
)

+ 2B2u3
(

71u3 + 7
)

+ 16u6
(

5u3 + 1
))

16u5 (B2 + u3)2
. (3.1)

Here ũ is the “tortoise” coordinate defined in appendix C. For simplicity, we continue to

express the Schrödinger potential in the original u-variable.

We consider only in-falling modes at the horizon; such a solution can be written as

g(ũ) = exp(−iωt)ψ(ũ). Now multiplying the first equation in (3.1) by ψ∗(ũ), integrating

by parts from the horizon to the boundary and using the equation of motion we get

∫ ∞

ũb

dũ
(

|ψ′(ũ)|2 + Vs(ũ)|ψ(ũ)|2
)

= −|ω|2|ψ(∞)|2
Imω

. (3.2)

Now we can understand qualitative features of imaginary part of quasinormal frequency

by studying this effective potential. We resort to numerics to study the potential Vs(u).

This potential vanishes at u = 1 because of the presence of the horizon and diverges as

u→ ∞ reflecting infinite gravitational potential of the background geometry.

The important feature that we find from figure 2 is that the Schrödinger potential is

always positive, therefore from eq. (3.2) we can conclude that the imaginary part of the

– 6 –
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quasinormal frequency is strictly negative. Moreover, the potential does not develop a neg-

ative energy well, therefore there exists no negative energy bound states in this phase. This

is consistent with the fact that the probe brane configuration is stable and tachyon free and

chiral symmetry restoration is accompanied by meson melting transition. Tachyonic modes

in the scalar field fluctuation are likely to appear in the overheated low temperature phase

which is bypassed by the transition. Also we see that the potential vanishes at the horizon

and therefore the spectrum is continuous, which is consistent with the melting transition.

Let us now represent the quasinormal frequency as ω = ωR + iωI. It can be noted from

the effective Schrödinger equation that there is a Z2 symmetry in ωR (namely, if g(u) is a

solution with a frequency ω then g∗(u) is also a solution with frequency −ω∗ [14]). Now we

can observe that the Schrödinger potential increases monotonically as we move away from

the horizon. This implies that Re[ω2] > 0 and hence Abs[ωR] > Abs[ωI]. By explicit numer-

ical calculation we will find that this is indeed the case (we point to figure 3(a) and 3(b)).

To extract more of the physics, we now compute the quasinormal frequency corre-

sponding to this scalar fluctuation. We find it extremely convenient to perform a change

of coordinates as implemented in ref. [31]. Let us introduce a new variable ρ = u/UT and

v = t+ α(ρ), where α(ρ) is determined from the condition that

dv = dt +
1

ρ3f(ρ)
dρ . (3.3)

This coordinate system {v, ρ} makes the numerics conveniently stable2 to find the quasi-

normal modes. The equation of motion3 for the fluctuation now takes the form

∂ρ

(

ρ11/2(1 +B2ρ−3)1/2ff ′χ

)

− iω
[

∂ρρ
5/2(1 +B2ρ−3)1/2fχ + 2ρ5/2(1 +B2ρ−3)1/2f ′χ

]

+ρ5/2(1 +B2ρ−3)1/2fχ = 0 . (3.4)

It is now straightforward to check that this equation admits the existence of quasinormal

modes. To find how it depends on the background magnetic field we use a shooting tech-

nique to solve the fluctuation equation and pick the appropriate value of ω for which the

equation admits a normalizable solution (this is achieved by imposing the condition that

fχ → 0 as ρ → ∞). As boundary conditions we impose fχ(1 + ǫ) = 1 and f ′χ(1 + ǫ) equal

to a value obtained by requiring the equation of motion to be regular near ρ = 1, the event

horizon. Here the parameter ǫ is a vanishingly small number in our numerical scheme.

The result of this pursuit is summarised in figure 3(a) and 3(b). Since we are in the

high temperature phase the quasinormal mode is comprised of both real and imaginary

parts. It would be expected that the absolute value of the real part corresponds to the

mass of the meson before it melts and the absolute value of the imaginary part corresponds

to its inverse lifetime analogous to ref. [14] for the D3-D7 system. Figure 3(a) then tells

us that the magnetic field increases the scalar meson mass and figure 3(b) hints that the

2We refer the reader to ref. [31] for more details.
3In presence of an external field this equation does not take the general form described in ref. [31]. This

is due to the breaking of the SO(3, 1) → SO(1, 1) × SO(2) by the presence of the magnetic field as a result

of which the Laplacian in the {x2, x3}-direction gets squashed.

– 7 –
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Figure 3. The real (ωR = Re[ω]) and imaginary (ωI = Im[ω]) part of the quasinormal modes for

the scalar fluctuation as a function of the external field. The quasinormal frequency is measured in

units of the background temperature T . The small wiggles are due to numerical errors; here we have

plotted the polynomial which fits the data. As expected before, we confirm that Abs[ωR] > Abs[ωI],

however they are roughly of the same order.

inverse lifetime gets bigger as the field is dialed up. However the precise identification of

the meson mass and inverse lifetime with the quasinormal modes of the scalar fluctuation

is a subtle issue in this particular model (see ref. [32]).

3.2 Vector fluctuation

The vector meson spectrum in general is determined by a set of coupled equations of

motion. It is however possible to completely decouple the transverse and the longitudinal

modes if we restrict ourselves to the oscillations parallel to the magnetic field. If we

restrict ourselves to the oscillation in one of the perpendicular directions (e.g. along the

x3-direction) to the applied magnetic field, then it is also possible to decouple one of the

transverse modes (in this case the A2-vector mode). However, the remaining transverse

mode and the longitudinal mode remain coupled. The details are given in appendix A.

Here we study the decoupled sectors only.

3.2.1 The transverse mode

We begin analyzing the transverse vector meson spectra. To extract qualitative features of

the spectra we study the Schrödinger potential. The equation of motion for the A2 vector

modes is given by

∂u

[

e−φ

√

− det
(

E
(0)
ab

)

S22SuuA′
2(u)

]

+

(

e−φ

√

− det
(

E
(0)
ab

)

)

ω2SttS22A2(u) = 0 , (3.5)

where we chose an ansatz of the form A2 = A2(u)exp(−iωt). It is straightforward to turn

this equation in the form of a Schrödinger equation with an effective potential given by

VS(u) =

(

u3 − 1
) (

5
(

7u3 + 5
)

B4 − 2
(

u6 − 43u3
)

B2 + 8
(

u9 + 2u6
))

16u5 (u3 +B2)2
,

with dũ =
u3/2

u3 − 1
du , (3.6)

– 8 –
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Figure 4. The Schrödinger potential for the vector meson for different values of external magnetic

field. Here ũ denotes the “tortoise” coordinate mentioned in appendix B. As the magnetic field

increases we observe that a small well develops in the effective Schrödinger potential. The depth of

this positive well is set by the background field.

where ũ is the “tortoise” coordinate. Clearly the horizon is located at ũ → ∞ and the

boundary is located at ũ→ 0.

The corresponding potential is shown in figure 4. The main qualitative feature that

emerges from this is the fact that there is no instability due to existence of bound states

of positive imaginary frequency modes since the potential remains positive definite. We

observe, however, that a non-vanishing magnetic field can create a dimple in the otherwise

smooth and rather featureless potential and therefore create local (positive) potential well.

Therefore it is possible to have long-lived bound states with Abs[ωR] ≫ Abs[ωI]. In this

case, Abs[ωR] is set by the depth of the well, which in turn is set by the background field.

If we increase the magnetic field even higher then the dimple gets bigger and bigger and

ultimately swallows the well. At even higher magnetic field the potential again takes a

shape similar to the vanishing external field case. Therefore the imaginary part of the

quasinormal frequency may have an interesting behaviour with increasing magnetic field.

We may expect that Abs[ωI] starts decreasing with increasing magnetic field, but after a

critical value it starts increasing again. Next we turn to the numerics.

The equation of motion (for the vector mode A2 with non-zero spatial momentum) in

this case is given by

∂a

[

e−φ

√

− det
(

E
(0)
ab

)

S22
(

SaρFρ2 + SavFv2 + SaiFi2

)

]

= 0 , i ∈ {1, 3} , (3.7)

where Sab are the analogue of Sab in eq. (A.4) when the coordinate change described in

eq. (3.3) has been performed.

The background field breaks the full SO(3, 1) Lorentz symmetry and there is an unbro-

ken SO(2) symmetry corresponding to the rotation in the plane perpendicular to the mag-

netic field. Therefore the transverse vector meson spectra with a non-zero momentum will

have two distinct branches. Mesons can have momentum along the direction of the back-

ground field (corresponding to i = 1) or in the perpendicular plane (corresponding to i = 3).

– 9 –
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Figure 5. The real and imaginary part of the quasinormal modes for the vector fluctuation as

a function of the external field. The frequency is expressed in units of background temperature

T and the magnetic field is expressed in units of R. We find a local minima in Abs[ωI] in the

parameter range we have explored. This is qualitatively similar to the behaviour anticipated from

analyzing the effective Schrödinger potential. We also observe that in the most of the parameter

space Abs[ωR] ≫ Abs[ωI].

Without any loss of generality we can consider studying the spectrum of the A2 vector

meson. We can give this meson a momentum along the x1-direction or along the x3-

direction (but no momentum along x2-direction since this is the transverse mode). The

spectrum would be entirely equivalent to the spectrum of the A3 vector modes having

momentum along the x1-direction or along the x2-direction.

Now we follow the same numerical approach. We impose A2(1+ǫ) = 1 and fix A′
2(1+ǫ)

from the equation of motion near the horizon. With these boundary conditions we look for

normalizable solutions for A2, which gives the quasinormal modes.

In figure 5(a) and 5(b) we have shown the dependence of the real and imaginary part

of quasinormal frequency for the particular choice of k = 0. We observe that the inverse

lifetime of the vector meson gets shorter as the external field is dialed up and therefore

enhances the stability of the meson. This behaviour is opposite to what we observed for

the scalar meson fluctuation.

Next we obtain the dispersion relation when k 6= 0. In figure 6(a) we demonstrate

this dispersion relation for a wide range of values for k and in figure 6(b) we have shown a

magnified version of figure 6(a) to more clearly see the role an external magnetic field plays

in this case. These two figures correspond to the dispersion relation when the momentum

is parallel (i.e. along x1-direction) to the magnetic field. We observe that for high enough

spatial momentum the dispersion relation curve approximates the zero field dispersion

curve quite well. We have shown in figure 6(c) the dispersion relation when the momentum

is perpendicular (i.e. along x3-direction) to the background field. The qualitative behaviour

between these two dispersion curves are clearly different; however for large enough spatial

momenta these curves tend to become insensitive to the background field. This is because

the heavier the meson becomes the less sensitive it is to the background field.
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Figure 6. The dispersion relation between the real and imaginary part of the quasinormal frequency

for two different values of magnetic field. The red (solid) curves correspond to the dispersion relation

for non-zero magnetic field. The black (dashed) curve corresponds to the dispersion relation when

there is no magnetic field. The black dots represent the corresponding values of quasinormal

frequency for vanishing spatial momentum. Figure 6(a) and 6(b) correspond to vector mesons

having momenta along x1-direction and figure 6(c) corresponds to vector meson with momentum

along x3-direction.

3.2.2 The longitudinal modes

Now we study the longitudinal mode. With the change in variables in equation (3.3), we

write down the equations of motion for gauge fields along {v, x1}

∂ρ

[

e−φ

√

−det
(

E
(0)
ab

)

(SvvSρρ − SvρSρv)A′
v

]

−e−φ

√

−det
(

E
(0)
ab

)

k
[

Svv(kAv + ωA1) + iSvρA′
1

]

+ 4g−1
s BA′

1 = 0 ,

∂ρ

[

e−φ

√

−det
(

E
(0)
ab

)

S11
(

SρρA′
1 − iSρv(kAv + ωA1)

)

]

−e−φ

√

−det
(

E
(0)
ab

)

S11ω
[

Svv(kAv + ωA1) + iSvρA′
1

]

− 4g−1
s BA′

v = 0 , (3.8)

– 11 –



J
H
E
P
0
7
(
2
0
0
9
)
1
0
3

æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ
æ

æ æ

à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à
à à

à à
à à à à

à à à

k increasing®

1.7 1.8 1.9 2.0 2.1 2.2 2.3
Re@ΩHkLD

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

Im@ΩHkLD

(a)

0.02 0.04 0.06 0.08 0.1
B

-0.002

-0.004

-0.006

-0.008

Re@ΩHkLD

(b)

Figure 7. The dispersion relation of longitudinal oscillation in presence of a background magnetic

field. The quasinormal frequency is measured in units of the background temperature. In figure 7(a)

the black solid curve represents the dispersion relation when the magnetic field is absent, the blue

(circular) dots correspond to B = 5 × 10−2 and the purple (square) dots correspond to B = 10−1.

B has been expressed in units of R. In figure 7(b) we have shown the dependence of the lowest

quasinormal frequency corresponding to the hydrodynamic mode with the magnetic field for a fixed

momentum k = 0.01. The imaginary part of the quasinormal frequency does not depend on the

magnetic field in the hydrodynamic limit.

along with the constraint

e−φ

√

−det
(

E
(0)
ab

)

(SρρSvv − SρvSvρ) iωA′
v + i4g−1

s B(ωA1 + kAv)

−qe−φ

√

−det
(

E
(0)
ab

)

S11
[

iSρρA′
1 + Sρv(kAv + ωA1)

]

= 0 , (3.9)

where k is the momentum along x1-direction. We define the longitudinal mode to be

given by

ωA1 + kAv = E . (3.10)

Now using the definition of the longitudinal mode and the constraint equation we can solve

for A′
v and A′

ρ in terms of E and E
′ and then substitute back in the equation of motion for

the gauge fields to obtain

E
′′(ρ) + Z1(ρ)E

′(ρ) + Z2(ρ)E(ρ) = 0 , (3.11)

where Z1 and Z2 are known functions4 of ρ.

Equation (3.11) now can be numerically solved by using the boundary conditions that

E(1 + ǫ) = 1 and E
′(1 + ǫ) equal to a value obtained from the equation of motion itself.

The condition of normalizability then fixes the quasinormal modes.

The numerical result is shown5 in figure 7(a). The qualitative behaviour of the dis-

persion curve is similar to the transverse modes. It is evident that increasing magnetic

4The explicit expressions of Z1 and Z2 are not very illuminating, thus we do not provide them here.
5Note that here we numerically explore only for positive values of B. The equation of motion for the

longitudinal modes have a linear term in B, and therefore the quasinormal modes may depend on the sign

of B. However, we found numerically that the qualitative features of the quasinormal modes are similar

also for negative values of B.
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field brings quasinormal frequency closer to the real axis in the complex plane. However,

for a fixed magnetic field, the dispersion curves tend to approach the zero magnetic field

dispersion curve as the momentum increases.

4 Mesons with large spin

Mesons with large spin can be described by strings having both its end points on the flavour

brane and rotating on a two plane along the directions where the gauge theory lives. For

large enough angular momentum, the length of the string is much larger compared to ℓs and

we can use classical Nambu-Goto action to describe the dynamics of the rotating string.

Mesons with large spin have previously been analyzed in, e.g., refs. [21, 26]. Here we will

follow the same framework, now including the effect of an external magnetic field.

In absence of magnetic field due to rotational symmetry, the spectrum does not depend

on the direction of the angular momentum J . An external magnetic field breaks this

symmetry and introduces a splitting of the energy levels (Zeeman effect). Here we will

focus on the two cases, namely when the magnetic field is parallel or anti-parallel to the

angular momentum. In this case there should be a Zeeman splitting in energy for mesons

with non-zero magnetic moment.

This idea has been implemented in ref. [42] in a different model.6 We adopt similar

system and consider two flavour brane-anti-brane pair very close to each other so that in

the bulk they join leaving two diagonal U(1)s (call this U(1)A and U(1)B corresponding to

the two pair of flavour branes). We consider now turning on fields having equal opposite

charge under these two U(1)s. Now AA and BB strings will have equal and opposite

charges but AB and BA strings will have equal charges. In the first case, the total orbital

magnetic moment of the meson will vanish whereas in the second case the meson will have

a non-zero magnetic moment. The magnetic field will induce a quadratic correction to

the meson energy for the former and a linear Zeeman splitting for the later. Here we

will analyze the later case only. It is useful to note that this configuration is symmetric

under reflection around the midpoint of the string (at ρ = 0). We will refer to this as the

symmetric configuration.

To proceed we write the relevant part of the background metric7 in the following form

(rewriting the {x2, x3}-two plane in polar coordinate {ρ, φ})

ds2 =
( u

R

)3/2
(

f(u)dt2E + dρ2 + ρ2dφ2
)

+

(

R

u

)3/2 du2

f(u)
,

f(u) = 1 −
(uT

u

)3
. (4.1)

We recover the zero temperature background by setting uT = 0. We will work with the

Nambu-Goto action for the string with the following ansatz for the string profile

t = τ , ρ = ρ(σ) , u = u(σ) , φ = ωτ . (4.2)

6For more recent similar work see, e.g., refs. [43, 44].
7Here we explicitly write down the metric corresponding to the high temperature phase only. The

background metric corresponding to the low temperature phase can likewise be written in an analogous

form.
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From now on the parameters {τ, σ} will always refer to the worldsheet coordinates for the

string. We also assume that ω is positive (i.e. only clockwise rotation).

In the presence of an external constant magnetic field the Nambu-Goto action is ac-

companied by a boundary term coupled to the magnetic potential Aφ = Bρ2/2. This

potential Aφ gives rise to a magnetic field B(2) = Bρdρ ∧ dφ = Bdx2 ∧ dx3. Taking this

boundary term into account the action for the string is given by

S =
1

2πα′

∫

dτdσ

[

( u

R

)3
(

f(u) − ρ2ω2
)

(

ρ′2 +
u′2

f(u)

(

R

u

)3
)]1/2

+ ∆SB ,

∆SB =
1

2πα′

[
∫

A|σ+ +

∫

A|σ−

]

, A =
Bρ2

2
dφ , (4.3)

where σ± represents the right and the left boundaries and the relative positive sign between

the two boundary contributions coming from the magnetic potential is due to the symmetric

configuration.8 For convenience we introduce the rescaled variables

ρ̃ = ρω , ũ = uω , R̃ = Rω , σ̃ = σω . (4.4)

The expression for the energy and the angular momentum for the spinning string in the

rescaled variables can simply be obtained to give

E = ω
∂L

∂ω
− L =

1

2πα′

(

1

ω5/2R3/2

)∫

dσ̃ũ3/2



ρ̃′2 + ũ′2
(

R̃

ũ

)3




1/2

1
√

1 − ρ̃2
,

J =
∂L

∂ω
=

1

2πα′

(

1

ω7/2R3/2

)∫

dσ̃
ρ̃2

√

1 − ρ̃2



ũ3



ρ̃′2 + ũ′2
(

R̃

ũ

)3








1/2

+ ∆JB ,

∆JB =
1

2πα′ω2

(

B
ρ̃2

2

∣

∣

∣

∣

σ+

+ B
ρ̃2

2

∣

∣

∣

∣

σ−

)

. (4.5)

We observe that the external field can enhance angular momentum of the meson if it is

aligned in parallel (positive values of B); and can reduce the angular momentum if it is

anti-parallel (negative values of B).

To proceed we need to solve for the string embeddings. The equation of motion ob-

tained from the Nambu-Goto action has to be supplemented by the boundary condition

π1
X

∣

∣

∂Σ
=

∂L

∂(X ′)M
δXM

∣

∣

∣

∣

∂Σ

= 0 . (4.6)

Since δu|∂Σ = 0 and δρ|∂Σ is arbitrary, we have to impose the Neumann boundary con-

dition (in absence of any external field) (∂L/∂ρ′)|∂Σ = 0. This condition gives us the

following constraint

π1
ρ̃

∣

∣

∂Σ
= ρ̃′

[

(ũ/Rω)3 (1 − ρ̃2)

ρ̃′2 + ũ′2 (ωR/ũ)

]1/2
∣

∣

∣

∣

∣

∣

∂Σ

= 0 . (4.7)

8For the non-symmetric configuration the there will be a relative negative sign between these two terms.

We refer to ref. [42] for further details on this construction.
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So we need to impose the boundary condition ρ̃′|∂Σ = 0, which means that the string is

ending perpendicularly on the flavour brane-anti-brane pair. We will come back to the

details of our numerical scheme in a later section.

The presence of an external magnetic field changes this boundary condition. It can be

easily seen that the boundary condition to be satisfied is now given by

π1
ρ̃

∣

∣

∂Σ
− (−Bρ̃) = 0 , (4.8)

where π1
ρ̃

∣

∣

∣

∂Σ
is given in equation (4.7). Therefore we need to solve the equation of motion

obtained from the action in eq. (4.3) subject to the boundary condition given in eq. (4.7)

or (4.8) in absence or presence of a magnetic field respectively.

We will begin by obtaining some analytical results in the large angular frequency

limit in the zero temperature phase. We will choose σ = ρ gauge and send ω → ∞;

from the reality condition of the Nambu-Goto action in eq. (4.3) this limit sets a bound

|ρ| < 1/ω → 0; and therefore equivalently we study the short string limit.

4.1 Analytical results

In this section we consider the zero temperature background and spinning strings with

large angular frequency only.

4.1.1 Vanishing magnetic field

In this section we closely follow the approach adopted in ref. [21]. In the large angular

frequency limit the relevant string profile is well approximated by the local geometry very

close to the point from where the string hangs. In this limit the string hangs from the point

where the brane-anti-brane pair join (the radial position denoted as U0). We therefore pick

the following ansatz to approximate the string profile

ũ(ρ̃) = ωU0 +
f(ρ̃)

ω
. (4.9)

It is easy to check that this ansatz is consistent with the equation of motion for the string

in ω → ∞ limit. To obtain the leading order behaviour we have to solve for the function

f(ρ̃) with the boundary conditions that f(0) = 0 = f ′(0).9 Substituting the ansatz given

in eq. (4.9) in the equation of motion for the string and keeping only the leading order

terms we obtain a differential equation for the function f(ρ̃) which can be integrated to

obtain the following analytic form

f(ρ̃) =
3U2

0

8R3

(

ρ̃2 + arcsin2(ρ̃)
)

. (4.10)

Plugging back f(ρ̃) from eq. (4.10) to eq. (4.5) and simplifying we get the following relations

E =
πU

3/2
0 λ

2R9/2

1

ω
+ O(ω−5/2) , J =

πU
3/2
0 λ

4R9/2

1

ω2
+ O(ω−3) , E =

√
πU

3/4
0

R9/4

√
λJ . (4.11)

9At ũ = ωU0 we require ũ′(ρ̃) = 0, which sets the boundary condition for the function f(ρ̃).
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Figure 8. The two possible profiles are presented; Us is the radial turnaround position for the

string. These are obtained by solving the equations of motion numerically, although we come back

to the numerical results in a later section. The profile in the left hand side has more energy than

the one in the right hand side.

From this we can see that ω → ∞ limit is equivalent to J ≪ λ limit. Also we find that the

mesons with large angular frequency follow a Regge trajectory with an effective tension10

τeff = E2/(2πJ) = λU
3/2
0 /(2R9/2). (4.12)

4.1.2 Non-vanishing magnetic field

In presence of a magnetic field the leading order solution for ũ(ρ̃) remains the same as

in eq. (4.10); however the boundary condition needs to be modified as given by eq. (4.8).

Using the expression for π1
ρ̃

∣

∣

∣

∂Σ
from eq. (4.7) (in the gauge σ = ρ̃) in the modified boundary

condition given in eq. (4.8) we can determine the value of ρ̃ at the boundary (meaning at

u = U0 where the string ends on the flavour brane). In the limit of small magnetic field

this critical value of ρ̃ (denoted as ρ̃C) can be obtained to be

ρ̃C = 1 − B2

2

(

R

U0

)3

. (4.13)

With this ρ̃C , there will be two different string profiles which we have shown in figure 8(a)

and 8(b) respectively.

These two different profiles result in two different energies (let us denote these energies

by E±). The one with the lower energy (i.e., with E−) is extended from ρ̃ = 0 to ρ̃C and the

one with the higher energy (i.e., with E+) is extended from ρ̃ = 0 to ρ̃ = 1 and then folds

back to ρ̃ = ρ̃C . Using the formulae for meson energy E and angular momentum J given

in eq. (4.5) we get the following linear order corrections (Zeeman splitting) introduced by

10The radial position U0 is related to the asymptotic separation L between the flavours via U
1/2

0 =

R3/2/(4L)B(9/16, 1/2), where B(a, b) is the Beta function. This length L sets the coupling strength of the

non-local four Fermi interaction for the dual NJL model.
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the magnetic field11

E− =

√
πU

3/4
0

R9/4

√
λJ − 2√

π

√

J

λ

BR9/4

U
3/4
0

,

E+ =

√
πU

3/4
0

R9/4

√
λJ +

2√
π

√

J

λ

BR9/4

U
3/4
0

. (4.14)

It is easy to check that this splitting is consistent with the general formula for energy (ob-

tained in ref. [41]) of a Nambu-Goto string with an effective tension τeff moving in a back-

ground magnetic field. The energy spectrum (for large J) is given by the following formula

E2 = (2πτeff )(1 − κ)J , κ =
2

π
arctan

(

B

τeff

)

. (4.15)

Recalling the expression for τeff from eq. (4.12) and using the general result above the

linear order correction to the energy of the string can be obtained which matches exactly

with what is obtained in eq. (4.14).

4.2 Numerical analysis

In order to extract the relevant physics we need to solve for the string embedding. To that

end we choose the parametrization σ = ρ + u since it provides better numerical stability

as discussed in e.g., ref. [42].

To solve the equation of motion first we fix the maximum radial position the string can

attain (this is the position where the brane-anti-brane pair join, which is denoted by U0).

This in turn fixes the asymptotic separation between the brane-anti-brane pair. Fixing U0 is

equivalent to fixing the constituent quark mass of the dual gauge theory and fixing L, the

asymptotic separation of the brane-anti-brane pair, is equivalent to keeping the four fermi

coupling of the dual NJL model. Now for a given U0 we look for a radial turnaround position

for the string (call it Us) such that shooting from Us with the IR boundary conditions

u(σ)|Us
= Us and u′(σ)|Us

= 0 would satisfy the UV boundary condition u′(σ)|U0
= 1

(up to numerical accuracy). The existence of the turnaround position is guaranteed by the

symmetric configuration that we consider here. In figure 9 we show two such representative

profiles for ω = 0.5 and ω = 3 respectively (corresponding to the blue and the red curve).

Such profiles were discussed in ref. [21] in a different but closely related model. In

brief, we find that for a given value of ω there are classes of solutions distinguished by the

number of times they cross zero (referred to as “nodes” in ref. [21]) along the horizontal

axis. Here we will constrain ourselves to the n = 1 case only.

We will now explore the behaviour of high spin mesons in presence of a background

magnetic field. The key feature that we will observe for both zero and finite temperature

phases is the existence of a shift in physical quantities such as energy and angular momen-

tum in presence of a non-zero magnetic field. We begin with our numerical results for the

zero temperature phase.

11The parameter U0 is also related to the constituent quark mass. For a study of how the constituent

quark mass behaves (for a fixed value of L) with the magnetic field see ref. [18].
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Figure 9. Two representative spinning string profiles. We have set R = 1.
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Figure 10. The effect of an external magnetic field in the zero temperature phase. The black

dashed lines represent B = 0, blue dashed lines represent B = −0.1 and the red dashed lines

represent B = 0.1; E and J have been evaluated in units of 1/(2πα′). B have been evaluated in

units of R.

4.2.1 Zero temperature phase

In figure 10(b) we have shown the dependence of the meson energy E as a function of

the angular frequency ω, in figure 10(c) we have plotted the dependence of meson angular

momentum again as a function of ω and in figure 10(a) we have shown the dependence of
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Figure 11. Dependence of maximum spin with magnetic field for varying constituent quark mass.

Jcrit and mq have been calculated in units of 1/(2πα′). We observe that even for a certain negative

value of B, i.e. when the magnetic field is aligned anti-parallel to its angular momentum, the meson

can be more stable than its zero field counterpart.

energy with angular momentum of the meson. For zero external magnetic field we recover

the behaviour discussed in ref. [26]. We find that the external magnetic field shifts the

energy and the angular momentum of the meson for generic values of the parameters of

the system; however with increasing angular frequency these observables tend to become

insensitive to the external field. In view of the approximate analytic results obtained in

eq. (4.14) it is straightforward to observe that an external field contributes only at order

B/ω and hence has vanishingly small effects for large enough angular frequency.

The existence of two energy branches for the same given value of J seems to persist

(as in vanishing external field) even in the presence of a magnetic field, although as the

magnetic field is increased we observe a tendency that this multi-valuedness in energy

starts disappearing. Therefore any possible unstable upper branch in figure 10(a) can get

promoted to a stable one by having sufficiently high angular momentum.

Moreover we observe that there exists a maximum angular momentum beyond which

the spinning meson dissociates. This dissociation is mediated by the acceleration of the

spinning string. However the presence of magnetic field can again stabilize the mesons by

raising the maxima in figure 10(c). Physically this simply corresponds to the fact that the

magnetic field enhances the angular momentum of the meson and thus makes it stable.

To demonstrate this effect we observe the plot in figure 11. Clearly the B = −0.1

branch is higher than the B = 0 branch; an even higher value of B would inhibit any

dissociation at all. Also the heavier the constituent quark mass is the more Jcrit becomes

making it less likely for the heavy mesons to dissociate.

A key feature of the high spin meson spectrum in presence of an external magnetic

field is the linear Zeeman splitting. In figure 12 we have shown such linear correction in

energy for fixed values of the meson angular momentum.
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Figure 12. Linear correction to energy for the equal charge case. From top to bottom the values

of angular momenta are J = 0.937, 0.907, 0.862 respectively. The dashed straight lines are the best

fit lines. E and J are both presented in units of 1/(2πα′). We observe that all the three best fit

lines have same (up to numerical accuracy) slope, which we expect from the very nature of Zeeman

splitting.

4.2.2 Finite temperature phase

We now perform a similar numerical study of high spin mesons in this intermediate tem-

perature phase.

In figure 13(b) we have shown the dependence of meson energy as a function of its

angular frequency ω; in figure 13(c) we have plotted the angular momentum of the meson as

a function of ω and in figure 13(a) we have shown the dispersion relation between the meson

energy and its angular momentum. The qualitative features of finite temperature physics

are similar to that of the zero temperature physics. There is however one distinction as

compared to the energy spectrum at zero temperature phase. The presence of magnetic field

at finite temperature does not promote the possible unstable upper branch in figure 13(a)

to a stable one within the range of values for the magnetic field that we have explored

using our numerical approach (we expect however that for sufficiently high values of B this

unstable mode will be promoted to be a stable one). A possible thermally enhanced decay

channel therefore remains open at finite temperature for a rather high value of the external

field. The other familiar role of the magnetic field, we again find, is to introduce shifts in

the physical quantities such as the energy and angular momentum of the meson.

The meson dissociation due to spin should now be enhanced due to thermal fluctuation.

We have previously observed that the magnetic field adds extra angular momentum to the

system and stabilizes the mesons. We study in figure 14(a) the effect of two competing

parameters on the critical angular momentum of the meson. Finally we observe the familiar

Zeeman splitting in figure 14(b).
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Figure 13. The shifts in presence of an external magnetic field. E and J have been computed in

units of 1/(2πα′). B has been evaluated in units of R. The black curve corresponds to vanishing

magnetic field, the blue curve corresponds to setting B = −1 and the red curve corresponds to

setting B = 1, where B has been expressed in units of R.

5 Conclusions

We have uncovered a sub-sector of the meson spectrum in the presence of an external mag-

netic field, complementing the phase structure that we obtained in ref. [18]. Mesons with

small spin that can be obtained by studying the quadratic fluctuations of the probe brane

classical configuration are harder to study in absolute generality. In general the task is to

solve a set of coupled differential equations, which we have here analyzed in the situations

where it is possible to decouple a subset of the modes. We have also analyzed the large

spin meson spectra in presence of a magnetic field to realize the well-known Zeeman effect.

We also found that an external magnetic field enhances the stability of mesons and inhibits

the dissociation. In appendix D we have presented a model calculation analyzing spinning

strings in Rindler space to capture key features of the large spin meson dissociation.

There are several directions to pursue in future work. It is of interest to obtain the low

spin meson spectra in the low temperature phase (i.e., when chiral symmetry is broken)

and their dispersion relations. In the present work, we have focussed on the effect of a

magnetic field. The analysis of the meson spectra and quasinormal modes in the presence

of an electric field could be pursued in a similar spirit. The effect on the spectra of the
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Figure 14. Figure 14(a) shows the dependence of maximum spin calculated in units of 1/(2πα′)

with the applied magnetic field. We can observe that there exists a certain range of values for

U0, which in turn fixes the value of the constituent quark mass, where the angular momentum is

lowered by the magnetic field. Figure 14(b) shows the linear correction to meson energy for the

equal charge case at finite temperature. From top to bottom the values of angular momenta are

J = 0.630, 0.560 and 0.490 evaluated in units of 1/(2πα′) respectively. The dashed lines are the

best fit lines.

presence of a chemical potential would also be of great interest. These external fields can

all be realized as the non-normalizable modes of anti-symmetric fields on the world volume

of the probe brane, and so we would expect that in all these cases in the high temperature

chirally symmetric phase, the scalar and vector fluctuations always remain decoupled, as

we have seen here.
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A The fluctuation equations

Here we provide the details of the computation for quadratic action for fluctuation of

the probe brane. To keep the story general we consider the scalar and vector fluctuation

simultaneously since in presence of an external magnetic field they are likely to couple.

Parametrizing the worldvolume of the D8/D8-brane by the function τ0(u), we consider the

following fluctuation

τ(u) = τ0(u) + (2πα′)χ(ξa) , (A.1)

where τ0(u) is the classical embedding of the probe brane and {ξa} refer to its worldvol-

ume coordinates.
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To proceed let us recall that the DBI lagrangian is given by

LDBI = e−φ
√

−det (P[Gµν +Bµν ] + (2πα′Fab))

= e−φ

√

−det
(

E
(0)
ab + (2πα′)E

(1)
ab + (2πα′)2E

(2)
ab

)

= e−φ

√

−det
(

E
(0)
ab

)

(

1 +
1

2
TrM− 1

4
TrM2 +

1

8
(TrM)2

)

+ O
(

M3
)

, (A.2)

where

Mc
a = (2πα′)

(

E
(0)
cb

)−1
E

(1)
ab + (2πα′)2

(

E
(0)
cb

)−1
E

(2)
ab ,

E
(0)
ab = Gµν (∂aX

µ) (∂bX
ν) +Bab , E

(1)
ab = Fab +Gττ τ

′
0(u) [δu

b (∂aχ) + δu
a (∂bχ)] ,

E
(2)
ab = Gττ (∂aχ) (∂bχ) . (A.3)

Here Gµν and {Xµ} refer to the bulk spacetime. For organizational convenience let us also

note that

(

E
(0)
ab

)−1
= Sab+Aab , Sab = diag

{

−Gtt, Gxx,
Gxx

G2
xx +B2

,
Gxx

G2
xx +B2

, g−1
uu

}

×||Ω4|| ,

Aab =
B

G2
xx +B2

(

δa
3δ

b
2 − δa

2δ
b
3

)

, guu = Guu + τ ′0(u)
2Gττ ,

||Ω4|| = diag
{

(u/R)−3/2 u2, (u/R)−3/2 u2, (u/R)−3/2 u2, (u/R)−3/2 u2
}

,
√

−det
(

E
(0)
ab

)

=
√

GttGxxguu (G2
xx +B2) (det ||Ω4||) , (A.4)

where S and A are the symmetric and anti-symmetric part respectively and ||Ω4|| denotes

the diagonal metric for the S4.

For the low temperature background we have

Gττ = (u/R)3/2 f(u) , Gxx = Gtt = (u/R)3/2 ,

Guu =
( u

R

)−3/2 1

f(u)
, f(u) = 1 −

(uKK

u

)3
,

and for the high temperature background we have

Gtt = (u/R)3/2 f(u) , Gxx = Gττ = (u/R)3/2 ,

Guu =
( u

R

)−3/2 1

f(u)
, f(u) = 1 −

(uT

u

)3
.

In what follows we will set R = 1.
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Now we can determine the effective lagrangian corresponding to small fluctuations.

The contribution at order (2πα′)2 is summarised below

SDBI =

∫

d9ξLtotal , Ltotal = −µ8 [Lχ + LF + LχF ] ,

Lχ =
1

2
Gττ

(

SuuGττ τ
′
0(u)

2 − 1
)

e−φ

√

−det
(

E
(0)
ab

)

Sab (∂aχ) (∂bχ) ,

LF =
1

4
e−φ

√

−det
(

E
(0)
ab

)

Saa′Sbb′FabFa′b′ ,

LχF =
1

2
∂u

[

e−φτ ′0(u)GττSuu

√

−det
(

E
(0)
ab

)

Aab

]

χFab . (A.5)

The term LχF is the interaction term that couples the scalar and the vector modes. Clearly

if τ ′0(u) = 0 then the coupling vanishes. Therefore for the high temperature phase (i.e.,

when τ0(u) = const.) the scalar and vector meson modes are always decoupled.

Now we determine the contribution coming from the Wess-Zumino term. To this end

let us first recall that the background has a C5 potential and a C3 potential dual to C5.

The C5 potential is given by

C5 = g−1
s

( u

R

)3
dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dτ . (A.6)

On the worldvolume of the probe brane this C5 induces a 5-form given by

P [C5] = g−1
s

( u

R

)3
(

τ ′0(u) + 2πα′χ
)

dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ du . (A.7)

Therefore we can immediately observe that for the high temperature phase this cannot

contribute at the leading order.

Let us now recall that the Wess-Zumino term is given by

SWZ = µ8

∫

M9

∑

p

C(p+1) ∧ exp
(

2πα′F +B
)

. (A.8)

It is straightforward to see that P[C(5)] ∧ B(2) vanishes identically. Therefore the total

contribution coming from the Wess-Zumino term at order (2πα′)2 is given by

SWZ =
1

2
µ8

∫

M9

(

P[C5] ∧ F2 ∧ F2 −
1

3
F4 ∧A ∧ F2 ∧B2

)

, with F4 = dC3 F2 = dA ,

(A.9)

We have performed an integration by parts to obtain the second term above. In what

follows we will focus on the special case of τ ′0(u) = 0 in which case the first term in

eq. (A.9) does not contribute at the leading order.

The equations of motion for the gauge fields then decouple from the scalar fluctuation

and is given by (using R = 1)

∂a

[

e−φ

√

−det
(

E
(0)
ab

)

Saa′Sbb′Fa′b′

]

+ 4g−1
s Bǫba

′b′23∂b′Aa′ = 0 . (A.10)
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where now a, a′, b, b′ ∈ {R1,3}⋃{u}, on the probe brane worldvolume. It is now possible

to consistently set all the Aα = 0 where α ∈ S4. This choice imposes a constraint of the

following form

Sµν∂α∂µAν = 0 . (A.11)

This constraint can be trivially satisfied by looking at the gauge field fluctuations indepen-

dent of the spherical directions (in other words focussing only on the SO(5) singlet states).

The most general ansatz for the gauge field fluctuations consistent with the previous

constraint is given by

At = At(u)e
−iωt+ikx1+ik2x2+ik3x3

,

Ai = Ai(u)e
−iωt+ikx1+ik2x2+ik3x3

,

Au = Au(u)e−iωt+ikx1+ik2x2+ik3x3

. (A.12)

To fix the residual gauge, we further impose Au = 0. This gauge choice gives the

following constraint

e−φ

√

−det
(

E
(0)
ab

)

Suu
[

Stt(ωA′
t) − S11(kA′

1) − S22(k2A
′
2) − S33(k3A

′
3)
]

+4g−1
s B(ωA1 + kAt) = 0 . (A.13)

With this ansatz the equations of motion for the gauge fields are given by

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

SttSuuA′
t

]

+4g−1
s BA′

1

−e−φ

√

−det
(

E
(0)
ab

)

Stt
[

kS11(ωA1+kAt)+k2S22(ωA2+k2At)+k3S33(ωA3+k3At)
]

= 0 ,

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

S11SuuA′
1

]

− 4g−1
s BA′

t

−e−φ

√

−det
(

E
(0)
ab

)

S11
[

k2S22(k2A1 − kA2)+k3S33(k3A1 − kA3)+ωStt(ωA1+kAt)
]

= 0 ,

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

S22SuuA′
2

]

−e−φ

√

−det
(

E
(0)
ab

)

S22
[

kS11(kA2 − k2A1)+k3S33(k3A2 − k2A3)+ωStt(ωA2+k2At)
]

= 0 ,

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

S33SuuA′
3

]

−e−φ

√

−det
(

E
(0)
ab

)

S33
[

kS11(kA3 − k3A1)+k2S22(k2A3 − k3A2)+ωStt(ωA3+k3At)
]

= 0 .

(A.14)

In general, the gauge field fluctuations can have momentum along any of the spatial

directions. Due to the presence of the magnetic field there are two particularly interesting
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cases to consider. The fluctuation field can either oscillate in the direction parallel to the

magnetic field, or in the direction perpendicular to the magnetic field. We discuss these

cases below.

Case 1: oscillation parallel to the magnetic field. Let us consider first restricting

ourselves to k2 = 0 = k3. Equations in (A.14) then reduce to

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

SttSuuA′
t

]

+ 4g−1
s BA′

1 − e−φ

√

−det
(

E
(0)
ab

)

SttkS11(ωA1+kAt) = 0 ,

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

S11SuuA′
1

]

− 4g−1
s BA′

t − e−φ

√

−det
(

E
(0)
ab

)

S11ωStt(ωA1+kAt) = 0 ,

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

S22SuuA′
2

]

− e−φ

√

−det
(

E
(0)
ab

)

S22
(

k2S11+ω2Stt
)

A2 = 0 ,

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

S33SuuA′
3

]

− e−φ

√

−det
(

E
(0)
ab

)

S33
(

k2S11+ω2Stt
)

A3 = 0 ,

(A.15)

along with the following constraint

e−φ

√

−det
(

E
(0)
ab

)

Suu
[

Stt(ωA′
t) − S11(kA′

1)
]

+ 4g−1
s B(ωA1 + kAt) = 0 . (A.16)

In this case, the longitudinal modes (At, A1 components oscillating along {t, x1} plane)

and the transverse modes (A2, A3 components oscillating along {t, x1} plane) clearly de-

couple. It is useful to note that A2, A3 transform as vectors and {At, A1} transforms as a

scalar under the SO(2) rotation group in the plane perpendicular to the magnetic field.

Case 2: oscillation perpendicular to the magnetic field. Now we restrict ourselves

to k = 0 = k2. In this case the equations of motion in (A.14) become

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

SttSuuA′
t

]

+4g−1
s BA′

1 − e−φ

√

−det
(

E
(0)
ab

)

Sttk3S33(ωA3+k3At) = 0 ,

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

S11SuuA′
1

]

− 4g−1
s BA′

t − e−φ

√

−det
(

E
(0)
ab

)

S11
(

k2
3S33+ω2Stt

)

A1 = 0 ,

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

S33SuuA′
3

]

− e−φ

√

−det
(

E
(0)
ab

)

S33ωStt (ωA3+k3At) = 0 ,

∂u

[

e−φ

√

−det
(

E
(0)
ab

)

S22SuuA′
2

]

− e−φ

√

−det
(

E
(0)
ab

)

S22
(

k2
3S33+ω2Stt

)

A2 = 0 ,

(A.17)

along with the constraint

e−φ

√

−det
(

E
(0)
ab

)

Suu
[

Stt(ωA′
t) − S33(k3A

′
3)
]

+ 4g−1
s B(ωA1 + kAt) = 0 .
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In this case only the A2-transverse mode decouple from the rest of the gauge field fluc-

tuations. The longitudinal modes (At, A3 components oscillating along {t, x3} plane) and

the transverse mode (A1 component oscillating along {t, x3} plane) are in general coupled.

B Lowest hydrodynamic mode in vanishing magnetic field

Here we analyze the gauge field fluctuations when there is no magnetic field. We provide

an analytical derivation for the dispersion relation of the lowest hydrodynamic mode of the

longitudinal oscillation, which has been obtained by other methods in refs. [15, 31].

The longitudinal mode is defined to be E(u) = ωA1 + kAt. Using this definition, the

constraint equation in (A.16) and the equations of motion in (A.15) (after setting B = 0)

we obtain the equation of motion for the longitudinal mode to be

E(u)
(

ω2 − k2f(u)
)

R3

u3f(u)2
+

E ′(u)
(

5f(u)ω2 + 2uf ′(u)ω2 − 5k2f(u)2
)

2uf(u) (ω2 − k2f(u))
+ E ′′(u) = 0 ,

f(u) = 1 −
(uT

u

)3
. (B.1)

With the following variable change

x =
u

uT
, (B.2)

the equation of motion for the longitudinal mode becomes

d2E
dx2

+
5
(

1 − x−3
) (

ω2 − k2
(

1 − x−3
))

+ 6ω2x−3

2x (1 − x−3) (ω2 − k2 (1 − x−3))

dE
dx

+
R3
(

ω2 − k2
(

1 − x−3
))

uTx3 (1 − x−3)2
E(x) = 0 .

(B.3)

The near-horizon limit u → uT is now achieved by taking the x → 1 limit. In this

limit, the equation of motion takes the form

d2E
dx2

+
1

x− 1

dE
dx

+
R3ω2

9uT (x− 1)2
E(x) = 0 . (B.4)

The general solution of this equation is given by a linear combination of the incoming and

the outgoing modes

E(x) = C1 cos(ω̃ log(x− 1)) + C2 sin(ω̃ log(x− 1)) , ω̃ =

√

R3ω2

9uT
=

ω

4πT
. (B.5)

The incoming boundary condition singles out the solution with C1 = −C2. Near the

horizon E(x) is therefore obtained to be

E(x) = CLExp (−iω̃ log(x− 1)) , (B.6)

where CL is an yet undetermined constant.
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Let us also define k̃ = k/(4πT ). Now, for small enough ω and k (such that ω̃ ≪ 1 and

k̃ ≪ 1), we can ignore the last term in equation (B.3). It turns out that in this limit the

equation of motion for the longitudinal mode is also exactly solvable.

E(x) = M2 +
1

3
M1

(

− 2k̃2

x3/2
+ ω̃2 log

[

x3/2 + 1

x3/2 − 1

])

, (B.7)

where M1 and M2 are constants of integration. Near the boundary, i.e., x → ∞, this

reduces to

E(x) = M2 −
2

3
M1

(

k̃2 − ω̃2
)

(

1

x3/2

)

. (B.8)

Therefore normalizability of E(x) forces us to impose M2 = 0. The quasi-normal modes

are therefore obtained to be the solution of this constraint.

On the other hand, in the vicinity of the horizon the solution in (B.7) takes the fol-

lowing form

E(x) =
1

3

(

−2M1k̃
2 + 3M2 +M1ω̃

2 log

(

4

3

))

− 1

3
M1ω̃

2 log(x− 1)

+
1

6
M1

(

6k̃2 + ω̃2
)

(x− 1) − 1

144
M1

(

180k̃2 + ω̃2
)

(x− 1)2 + · · · (B.9)

Now, for sufficiently small values of ω̃, we can expand the solution obtained in (B.6)

to get

E(x) = CL − iCLω̃ log(x− 1) − 1

2
CLω̃

2 (log(x− 1))2 · · · (B.10)

Comparing equation (B.9) and (B.10) we get

1

3

(

−2M1k̃
2 + 3M2 +M1ω̃

2 log

(

4

3

))

= CL ,

1

3
M1ω̃

2 = iCLω̃ . (B.11)

Setting M2 = 0, the solution of this equation is given by

M1 =
3iCL

ω̃
, ω̃ = −2ik̃2 + · · · (B.12)

Restating this result in dimensionful parameters, we get the lowest hydrodynamic quasi-

normal frequency

ω = −iDRk
2 , DR =

1

2πT
, (B.13)

where DR is the R-charge diffusion constant. This value for the diffusion constant was

obtained numerically by studying the spectral functions of holographic flavours in ref. [15]

and was also confirmed in ref. [31] by numerically obtaining the lowest quasinormal mode

of the longitudinal oscillation.
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In the vanishing magnetic field limit, the transverse modes obey the following equations

(obtained from eq. (A.15))

A2(u)
(

ω2 − k2f(u)
)

R3

u3f(u)2
+
A′

2(u) (5f(u) + 2uf ′(u))

2uf(u)
+A′′

2(u) = 0 ,

A3(u)
(

ω2 − k2f(u)
)

R3

u3f(u)2
+
A′

3(u) (5f(u) + 2uf ′(u))

2uf(u)
+A′′

3(u) = 0 . (B.14)

Clearly the A2 and A3 meson spectra are degenerate. For convenience we again use the

variable x = u/uT . The solution close to the horizon is similar to the one obtained for the

longitudinal mode (given in equation (B.6)) and is given by

A2(x) = CT Exp (−iω̃ log(x− 1)) , (B.15)

where CT is an yet undetermined constant. At small values of ω and k (compared to the

background temperature T ) the solution for the transverse modes can be obtained to be

A2(x) = N2 −
1

3
N1 log

[

x3/2 + 1

x3/2 − 1

]

+ · · · , (B.16)

where N1 and N2 are constants of integration.

Now expanding the solution in eq. (B.16) near the horizon and matching with the

solution in eq. (B.15) gives

N2 −
1

3
N1 log

(

4

3

)

= CT ,

1

3
N1 = −iCT ω̃ . (B.17)

Normalizability requires us to set N2 = 0. However, we do not get a consistent solution for

N1 from the conditions above. From the equations of motion in (B.14), it can be checked

numerically (see also ref. [31]) that the normalizability condition cannot be satisfied in the

hydrodynamic limit (namely when ω̃ ≪ 1 and k̃ ≪ 1). Therefore we can conclude that the

transverse mode does not have any solution compatible with the limit ω̃ ≪ 1 and k̃ ≪ 1

in accordance with the results obtained in, e.g. ref. [56].

C The effective Schrödinger equation

Here we outline the general variable changes to obtain the corresponding Schrödinger equa-

tion from the original equation for fluctuation modes. Without any loss of generality we

can write the equation for any fluctuation mode as follows

a1(u)f
′′
χ(u) + a2(u)f

′
χ(u) + ω2a3(u)fχ(u) = 0 , (C.1)

where, a1(u), a2(u) and a3(u) are known functions and prime denotes derivative with

respect to u, fχ(u) denotes the radial profile of the fluctuation mode and ω is the cor-

responding oscillatory frequency (in the finite temperature case this is the quasinormal

mode). Let us rewrite fχ(u) = σ(u)g(u) with

σ′(u)

σ(u)
= −1

2

[

a2(u)

a1(u)
+

1

2

(

a1(u)

a3(u)

)

∂u

(

a3(u)

a1(u)

)]

. (C.2)
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The Schrödinger equation is then obtained to be

√

a1(u)

a3(u)
∂u

(
√

a1(u)

a3(u)
(∂ug(u))

)

+ ω2g(u) − Vs(u)g(u) = 0 , where

Vs(u) =
1

B(u)2

[

1

4

(

A(u) +
B′(u)

B(u)

)2

+
1

2
∂u

(

A+
B′(u)

B(u)

)

+
A(u)

2

(

A(u) +
B′(u)

B(u)

)

]

,

A(u) =
a2(u)

a1(u)
, B(u) =

(

a3(u)

a1(u)

)1/2

. (C.3)

A more conventional form of the Schrödinger equation can be obtained after changing

variables to “tortoise” coordinate dũ = B(u)du; the horizon is then located at ũ → ∞.

The main goal of this exercise is to obtain the potential VS(u) and extract qualitative

features of the meson spectrum.

Here we have explicitly assumed that the fluctuation does not have any momentum

mode. The fluctuation equation for the meson having a momentum can also be recast in

the form of a Schrödinger equation. The changes of variables are exactly similar as already

mentioned in eq. (C.3), but the effective potential receives a positive contribution coming

from the momentum

VS(u, k) = VS(u, 0) + k2

( |a4|
a3

)

, (C.4)

where the left hand side of the equation (C.1) is now accompanied by another term of the

form −|a4(u)|k2fχ, the relative negative sign is due to the fact that k-corresponds to a

spatial oscillation.

D Spinning strings and background field in Rindler space, a model cal-

culation

Here we would like to solve a toy problem to study the effect of the magnetic field on meson

dissociation. We implicitly assume the framework where we can have two equal charges at

the two ends of the string and therefore analyze the symmetric configuration only. Rindler

spacetime provides an useful arena where many qualitative (if not quantitative) features

of an event horizon can be realized in a simple set up. Such study has been previously

carried out in ref. [29] without any background field. The main result of this exercise is

that the high spin meson dissociates once a critical value of the acceleration is reached.

This acceleration is in turn determined by the angular momentum of the meson.

There are two ways to physically interpret the results of such pursuits (e.g., see ref. [29]

and ref. [28]). We consider accelerating the rotating string in one of the space-like directions

and therefore a Rindler horizon forms in the four dimensional spacetime. Alternatively,

we can consider accelerating the string in the holographic direction and therefore a bulk

spacetime horizon forms which sets the temperature of the dual gauge theory. To begin

with we take the former point of view.
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The metric for the Rindler space can be written as

ds2 = −ξ2κ2dη2 + dξ2 + dρ2 + ρ2dφ2 , (D.1)

where {ρ, φ}-plane represents the plane where we would rotate the string. To add a back-

ground magnetic field we consider similar potential Aφ given before. Now the ansatz for

the string in terms of its worldvolume coordinates {τ, σ} is given by

η = τ , ξ = ξ(σ) , ρ = ρ(σ) , φ = ωτ . (D.2)

This ansatz implies that the direction of acceleration of the string is orthogonal to the direc-

tion of its rotation. We can readily see that there are two conserved charges associated with

the string, namely the angular momentum J , which is associated with the rotation along

φ-direction and the boost charge, which is associated with the translation in η-direction.

The Nambu-Goto action for the string now will be accompanied by a boundary term

exactly similar to the term ∆SB given in eq. (4.3). Therefore the full action is given by

S =
1

2πα′

∫

dτdσ
√

(ξ2κ2 − ω2ρ2)(ξ′2 + ρ′2) + ∆SB . (D.3)

Varying this action we can obtain the equation of motion for the string profile and the

boundary conditions we should impose. In absence of any external field this exercise has

been carried out in details in ref. [29], which we do not repeat here. The presence of the

magnetic field enforces us to impose the following boundary condition

πρ|±ℓ/2 =
∂L

∂ρ′

∣

∣

∣

∣

±ℓ/2

= −Bρω , (D.4)

where ℓ is the distance between the two end points of the string. The other boundary term

corresponding to the variation of ξ is satisfied imposing the Dirichlet boundary condition

δξ = 0. This corresponds to a situation where the end points move with a constant

acceleration a = ξ(±ℓ/2)−1.

Now choosing a gauge ρ = σ we can solve12 the equation of motion to obtain the profile

for the string given by

ξ(ρ) =
C

κ
cosh

[κ

ω
arcsin

(ωρ

C

)]

with C2 =
ω2ℓ2

4
(1 +B2) ,

J =
1

2πα′
ℓ2

4

(

1 +B2
)

arctan

(

1

B

)

, Ts =
1

2πα′ . (D.5)

As the notation suggests the parameter J represents the angular momentum of the meson.

As we have seen before, the presence of the background magnetic field does not change

the equations of motion for the Nambu-Goto string. Therefore the functional form of the

12The analytical solution of the equations of motion obtained from the Nambu-Goto action remains the

same as in ref. [29]. We refer to ref. [29] for further details about solving the equations of motion. We

use the same analytical solution and impose the boundary condition given in (D.4) to obtain the results in

eq. (D.5).
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Figure 15. The total angular momentum of the string in units of (2πα′) in the background field.

The horizontal dashed line represents the value of angular momentum of the string when there is

no background magnetic field. We observe that the B-field initially reduces and then increases the

angular momentum creating a local minima. However, we will observe that the stability of the

meson is always enhanced by the B-field.

string profile given in equation (D.5) is entirely determined by the Rindler geometry [29].

We notice that the presence of the magnetic field does induce an effective length ℓeff =

ℓ2(1 +B2) by changing the boundary condition of the string end-points.

A non-zero value of B brings about two key changes in the evaluation of the angular

momentum. The profile of the string modifies in order to satisfy the boundary condition

in eq. (D.4) and therefore the effective length ℓeff arises in the formula in (D.5). There is

also an additional explicit contribution ∆JB of the form shown in eq. (4.5), which finally

gives a functional factor of tan−1(1/B) in the expression for the angular momentum.

It can be shown that the explicit contribution of the of the magnetic field to the angu-

lar momentum, denoted by ∆JB , is actually cancelled by a term coming from integrating

over the string profile. The net resulting angular momentum therefore can be lower than

the angular momentum of the string in absence of the field. This is pictorially summarised

in figure 15.

To find the maximum acceleration we identify a−1 = ξ(ℓ/2) and look for minima of

the right hand side of the equation as a function of the parameter C. For now we content

ourselves with only positive values of B, i.e. when the string angular momentum and the

background field are parallel. It is a straightforward exercise to show that such minima

corresponds to values of C which satisfy the following equation (obtained from taking the

first derivative of ξ and setting it equal to zero at ρ = ±ℓ/2)

x = m tanh
(m

x

)

, where

x =
C

κ

1√
2πα′J

, m = arcsin

(

1√
1 +B2

)[

arctan

(

1

B

)]−1/2

. (D.6)

Clearly the parameter B generates a set of such values of C which satisfy the above equation
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Figure 16. The maximum acceleration in units of
√

2πα′J as a function of the external magnetic

field.

and therefore promotes the maximum value of acceleration to a function of the magnetic

field. Differentiating the eq. in the first line of (D.6) and using identities for the trigono-

metric hyperbolic functions we obtain that the family of roots of the equation can be simply

given by the relation x = αm where α = 0.834 is a constant.

Using these roots the maximum acceleration can be obtained as a function of the

background magnetic field which is given by

amax ∝
√

arctan

(

1

B

)

1

arcsin
(

1√
1+B2

) . (D.7)

The functional dependence is pictorially shown in figure 16. We observe that the maximum

acceleration grows almost linearly with the background field.

Alternatively we could imagine the Rindler space to be the near-horizon approximation

of a black hole background and the acceleration is along the holographic coordinate (we

make the identification that ξ = u, where u is the radial coordinate in the holographic set

up). The parameter κ (in eq. (D.1)) in this case represents the surface gravity and sets the

temperature of the dual gauge theory to be T = κ/(2π).

Now we imagine the string end points to sit on the flavour brane at some value of

ξ0 = U0, which fixes the constituent quark mass; and we consider a similar ansatz for the

string profile as presented in eq. (D.2). The interpretation of the set up is different from the

earlier one; however this brings about no change as far as the mathematics is concerned.

We therefore again obtain the string profile as given by eq. (D.5).

However in this case the physical parameter that captures the dissociation of the meson

is the size ℓ (which sets the angular momentum J via the relation in eq. (D.5)) of it. The

length is obtained to be

ℓ =
2C

κ

arccosh (κU0/C)√
1 +B2

[

arcsin
(

1/
√

1 +B2
)]−1

. (D.8)
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Figure 17. We plot the two functions given in eq. (D.9). The constants of proportionality have

not been taken into account here.

We would hope to see that for a given value of U0, there exists a maximum admissible size

of the spinning meson beyond which it dissociates.

We can treat as before the parameter C to be independent with respect to which we

will consider maximizing the length function ℓ. From eq. (D.8) it is clear that the external

magnetic field does not play any role to determine the value of C corresponding to the

maximum of ℓ; however it determines the the function ℓmax(B) and therefore also Jmax(B)

to be given by

ℓmax ∝ 1√
1+B2

[

arcsin
(

1/
√

1+B2
)]−1

, Jmax ∝ arctan

(

1

B

)

[

arcsin
(

1/
√

1+B2
)]−2

.

(D.9)

where the constants of proportionality depends on the background temperature T and the

parameter U0.

For illustrative purpose we have plotted the functional behaviour of ℓmax and Jmax

in figure 17(a) and 17(b) respectively. We see that the maximum length of the meson

saturates an upper bound at high enough values of the magnetic field; however no such

saturation is present in the maximum angular momentum of the meson.

For the background considered in the main text the Rindler spacetime does emerge

when we zoom in the region close to the horizon [12, 13]. The toy model here can therefore

be identified with a corresponding study of high spin mesons in the overheated phase. So

if we want to make a direct connection between the Rindler background dynamics to the

specific system studied in the text, we should remember that such a background appears

precisely in the over-heated phase of the system, where any small fluctuation is likely to

destroy the meson and drive the over-heated phase to the melted phase.
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